If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24t-16t^2=0
a = -16; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-16)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-16}=\frac{-48}{-32} =1+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-16}=\frac{0}{-32} =0 $
| 24t-16^2=0 | | 6+2/5(b)=12 | | 18q+4q-20q+4q+q=14 | | r-6=4r+6 | | 8p=-9+9 | | 24t-(4t)(4t)=0 | | 2y+18=12-6y+43 | | 20x-3=40 | | 1.4-1.6{t+6}=4.6 | | 5n+3=1+8n+2 | | 112=2(-8n-8) | | 83=3-4(1+7n) | | 4-2{v-6}=-8 | | 11d-9d=18 | | 14x-10x=16 | | 1-5b+4=-5 | | x+40+5x-10=180 | | 6r+7+r=21 | | 7/6=y/24 | | 3x^2-1=-7x | | 84+5x=26 | | 5=(p+5)/5 | | 3x2+x=-9 | | m+1/2m=126 | | 9z-2=16 | | 8+9x+10=7-3x+6 | | 3z-2=25 | | 5h/8-11=539/56 | | 6z-2=22 | | -6h+14=-16+4h | | -285=35y | | 9-5x+10=7-3x+6 |